Alternative microstructure of GaN nucleation layers grown by low pressure metal-organic vapor phase epitaxy on sapphire substrate

Abstract
Predominately hexagonal GaN nucleation layers were grown on sapphire substrate by low pressure metal-organic vapor phase epitaxy. Tilt angles of GaN single crystallites about the normal of sapphire substrate are determined to be in the range from 0° to 5° by using selected area electron diffraction. A small portion of cubic phase of GaN was observed to be selectively distributed in the grain boundary areas and the instantaneous surface state is suggested to play an important role in the nucleation of the Zincblende phase. Phase transition from hexagonal to cubic GaN caused by heavy radiation from ion beam was also noticed. A critical temperature is proposed to exist in forming predominately cubic or hexagonal GaN nucleation layer.