Effects of Methomyl and Helminthosporium maydis Toxin on Matrix Volume, Proton Motive Force, and NAD Accumulation in Maize (Zea mays L.) Mitochondria

Abstract
Methomyl and Helminthosporium maydis race T toxin block oxidative phosphorylation in mitochondria isolated from maize plants with Texas male sterile cytoplasm (T) but not in mitochondria isolated from those with Normal cytoplasm (N) (Bednarski, Izawa, Scheffer 1977 Plant Physiol 59: 540-545). Moreover, they have been reported to cause specific swelling in T mitochondria (Miller, Koeppe 1971 Science 173: 67-69; Koeppe, Cox, Malone 1978 Science 201: 1227-1229). We could not detect, by direct volume measurements, any change induced by these compounds in the mitochondrial matrix space. We show here that the proton motive force, which in maize mitochondria is composed of a large transmembrane potential and of a low transmembrane pH difference, is absent in T mitochondria incubated in the presence of methomyl or of Helminthosporium maydis race T toxin, while it is unchanged in N mitochondria. Methomyl and Helminthosporium maydis race T toxin induce, independently of the collapse of the proton motive force, a release of the cofactors NAD and coenzyme A from the mitochondrial matrix space. In particular, we show that NAD is transported in maize mitochondria, and that this transport, which is not dependent on the proton motive force, is inhibited by methomyl or Helminthosporium maydis race T toxin.