Synthesis, transport, and utilization of specific flagellar proteins during flagellar regeneration in Chlamydomonas.
Open Access
- 1 June 1982
- journal article
- research article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 93 (3) , 615-631
- https://doi.org/10.1083/jcb.93.3.615
Abstract
We labeled gametes of Chlamydomonas with 10-min pulses of 35SO4(-2) before and at various times after deflagellation, and isolated whole cells and flagella immediately after the pulse. The labeled proteins were separated by one- or two-dimensional gel electrophoresis, and the amount of isotope incorporated into specific proteins was determined. Individual proteins were identified with particular structures by correlating missing axonemal polypeptides with ultrastructural defects in paralyzed mutants, or by polypeptide analysis of flagellar fractions. Synthesis of most flagellar proteins appeared to be coordinately induced after flagellar amputation. The rate of synthesis for most quantified proteins increased at least 4- to 10-fold after deflagellation. The kinetics of synthesis of proteins contained together within a structure (e.g., the radial spoke proteins [RSP] ) were frequently similar; however, the kinetics of synthesis of proteins contained in different structures (e.g., RSP vs. alpha- and beta-tubulins) were different. Most newly synthesized flagellar proteins were rapidly transported into the flagellum with kinetics reflecting the rate of growth of the organelle; exceptions included a central tubule complex protein (CT1) and an actinlike component, both of which appeared to be supplied almost entirely from pre-existing, unlabeled pools. Isotope dilution experiments showed that, for most quantified axonemal proteins, a minimum of 35-40% of the polypeptide chains used in assembling a new axoneme was synthesized during regeneration; these proteins appeared to have predeflagellation pools of approximately the same size relative to their stoichiometries in the axoneme. In contrast, CT1 and the actinlike protein had comparatively large pools.This publication has 42 references indexed in Scilit:
- Increased levels of mRNAs for tubulin and other flagellar proteins after amputation or shortening of Chlamydomonas FlagellaCell, 1980
- Oversized flagellar membrane protein in paralyzed mutants of Chlamydomonas reinhardrii.The Journal of cell biology, 1980
- Hydrostatic pressure-induced internalization of flagellar axonemes, disassembly, and reutilization during flagellar regeneration in PolytomellaExperimental Cell Research, 1978
- Synthesis of tubulin and actin during the preimplantation development of the mouseExperimental Cell Research, 1978
- Flagellar elongation and shortening in Chlamydomonas. III. structures attached to the tips of flagellar microtubules and their relationship to the directionality of flagellar microtubule assembly.The Journal of cell biology, 1977
- Induction of microtubule protein synthesis in Chlamydomonas reinhardi during flagellar regenerationCell, 1976
- PROGRAMMED SYNTHESIS OF FLAGELLAR TUBULIN DURING CELL DIFFERENTIATION IN NAEGLERIA*Annals of the New York Academy of Sciences, 1975
- THE SITE OF IN VIVO ASSEMBLY OF FLAGELLAR MICROTUBULES*Annals of the New York Academy of Sciences, 1975
- Flagellar elongation: An example of controlled growthJournal of Theoretical Biology, 1974
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970