Influence of Light and Ambient Carbon Dioxide Concentration on Nitrate Assimilation by Intact Barley Seedlings

Abstract
The influence of light, dark, and ambient CO2 on nitrate assimilation in 8- to 9-day-old barley seedlings was studied. To develop the photosynthetic apparatus fully, the seedlings were grown in nitrogen-free Hoagland solution for 5 days in darkness followed by 3 days in continuous light. The seedlings reduced nitrate and nitrite in both light and dark, although more slowly in darkness. The slower nitrate reduction in darkness was not due to decreased uptake, since the steady-state internal concentration of nitrate was doubled. The faster nitrate reduction in light was attributed to recent products of photosynthetic CO2 fixation supplying reducing energy, possibly by shuttle reactions between chloroplasts and cytoplasm. In carbohydrate-deficient tissue, it appeared that recently fixed photosynthate could supply all of the energy required for nitrate reduction. When sufficient metabolites were present in the green tissue, light was not obligatory for the reduction of nitrate and nitrite.