Abstract
The involvement of protein phosphatases in regulating platelet activation was studied. The major portion of the phosphorylase phosphatase activity found in platelet lysates appears to be of the type 1 variety. The identification of this enzyme was based on the finding that greater than 80% of protein phosphatase activity was inhibited by the heat-stable inhibitor protein inhibitor 2 and, while only 20% of the phosphorylase phosphatase activity in platelet extracts was inhibited by 2 nM okadaic acid, greater than 95% of the activity was inhibited in the presence of 1 microM okadaic acid. Increases in protein phosphorylations occurred and thrombin-induced release of serotonin was prevented as a result of artificially inhibiting the enzyme with okadaic acid in intact platelets. This implies either that the regulation of okadaic acid sensitive protein phosphatases is necessary for some agonist-induced effects or that okadaic acid sensitive phosphatases are required for maintaining platelets in a responsive state.