Vertical distribution of elements in cells and matrix of epiphyseal growth plate cartilage determined by quantitative electron probe analysis.

Abstract
Quantitative electron probe analysis was performed on chick epiphyseal growth cartilage prepared by two anhydrous methods, ultrathin cryosections and freeze-dried epoxy-embedded tissue. Levels of Na, Mg, P, S, Cl, K, and Ca were determined in cytoplasm, mitochondria, extracellular matrix, matrix vesicles, and mineral nodules in four zones of the cartilage--proliferative, prehypertrophic, early hypertrophic, and early calcification. The exceptionally high levels of Na and K (up to 550 and 200 mmol/kg wet wt, respectively) found in the matrix are believed to be largely bound to fixed anions. Within cells, Na was higher than K (140 versus 20-34 mmol/kg wet wt), a condition that may reflect hypoxia. Ca and P were low in cells and unmineralized matrix. Ca and P were high in mitochondrial granules of the early hypertrophic zone and diminished in amount in the calcifying zone; the converse occurred in matrix vesicles. Mg was low to undetectable except in heavily mineralized structures (i.e., mitochondrial granules, matrix vesicles, and mineral nodules). S levels were high in matrix (approximately 400 mmol/kg wet wt) and increased slightly with maturation. The amount of S present greatly exceeds Ca levels and implies that sulfate, the predominant form of sulfur in proteoglycans, may serve as an ion-exchange mechanism for the passage of Ca through the matrix to sites where Ca and phosphate are precipitated.