Schistosomicidal activities ofLymnaea stagnalishaemocytes: the role of oxygen radicals

Abstract
SUMMARY: Macrophage-like defence cells (haemocytes) of the pond snailLymnaea stagnalismediate cytotoxicity through reactive oxygen intermediates (ROIs). This activity is NADPH-oxidase dependent, as in mammalian phagocytes during the respiratory burst. In this study, mother sporocysts of schistosomes, the compatibleTrichobilharzia ocellataand the incompatibleSchistosoma mansonievokein vitroROI activities (detected by luminol dependent chemiluminescence, LDCL) fromL. stagnalishaemocytes.S. mansoniis encapsulated by haemocytes and eliminated, whereasT. ocellataescapes encapsulation and survives. Both schistosomes were equally susceptible toin vitrooxidative damage from exposure to hydrogen peroxide and to ROIs generated by a xanthine/xanthine oxidase system. Protocatechuic acid, a specific antagonist of NADPH-oxidase, delayed the killing ofT. ocellataandS. mansonisporocysts by haemocytes of resistant snails (Biomphalaria glabrata and L. stagnalis, respectively). We conclude that ROIs take part in haemocyte-mediated cytotoxicity. However, neither a snail's capability to generate ROIs, nor a schistosome's susceptibility to ROIs, determine snail/schistosome incompatibility. Snail/schistosome compatibility is rather determined by the parasite's ability modulate haemocyte behaviour such that effective encapsulation and the generation of lethal concentrations of ROIs are prevented.

This publication has 24 references indexed in Scilit: