Relative distribution of synapses in the pulvinar nucleus of the cat: Implications regarding the “driver/modulator” theory of thalamic function
- 26 November 2002
- journal article
- research article
- Published by Wiley in Journal of Comparative Neurology
- Vol. 454 (4) , 482-494
- https://doi.org/10.1002/cne.10453
Abstract
To provide a quantitative comparison of the synaptic organization of “first-order” and “higher-order” thalamic nuclei, we followed bias-corrected sampling methods identical to a previous study of the cat dorsal lateral geniculate nucleus (dLGN; Van Horn et al. [ 2000 ] J. Comp. Neurol. 416:509–520) to examine the distribution of terminal types within the cat pulvinar nucleus. We observed the following distribution of synaptic contacts: large terminals that contain loosely packed round vesicles (RL profiles), 3.5%; presynaptic profiles that contain densely packed pleomorphic vesicles (F1 profiles), 7.3%; profiles that could be both presynaptic and postsynaptic that contain loosely packed pleomorphic vesicles (F2 profiles), 5.0%; and small terminals that contain densely packed round vesicles (RS profiles), 84.2%. Postembedding immunocytochemistry for γ-aminobutyric acid (GABA) was used to distinguish the postsynaptic targets as thalamocortical cells or interneurons. The distribution of synaptic contacts on thalamocortical cells was as follows: RL profiles, 2.1%; F1 profiles, 6.9%; F2 profiles, 5.4%; and RS profiles, 85.6%. The distribution of synaptic contacts on interneurons was as follows: RL profiles, 11.8%; F1 profiles, 9.7%; F2 profiles, 2.8%; and RS profiles, 75.6%. These distributions are similar to that found within the dLGN in that the RS inputs (the presumed “modulators”) far outnumber the RL inputs (the presumed “drivers”). However, in comparison to the dLGN, the pulvinar nucleus receives significantly fewer numbers of RL, F1, and F2 contacts and significantly higher numbers of RS contacts. Thus, the RS/RL synapse ratio in the pulvinar nucleus is 24:1, in contrast to the 5:1 RS/RL synapse ratio in the dLGN (Van Horn et al., 2000 ). In first-order nuclei, the lower RS/RL synapse ratio may result in the transfer of visual information that is largely unmodified. In contrast, in higher-order nuclei, the higher RS/RL synapse ratio may allow for a finer modulation of driving inputs. J. Comp. Neurol. 454:482–494, 2002.Keywords
This publication has 114 references indexed in Scilit:
- Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the catJournal of Comparative Neurology, 2000
- Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: A comparison with corticogeniculate terminalsJournal of Comparative Neurology, 1997
- Connections between the reticular nucleus of the thalamus and pulvinar‐lateralis posterior complex: A WGA‐HRP studyJournal of Comparative Neurology, 1995
- Further evidence for two types of corticopulvinar neuronsNeuroReport, 1994
- Cholinergic and monoaminergic innervation of the cat's thalamus: Comparison of the lateral geniculate nucleus with other principal sensory nucleiJournal of Comparative Neurology, 1989
- Synaptic circuits involving an individual retinogeniculate axon in the catJournal of Comparative Neurology, 1987
- Synaptic connectivity of a local circuit neurone in lateral geniculate nucleus of the catNature, 1985
- The structural organization of the ventral posterolateral nucleus in the ratJournal of Comparative Neurology, 1981
- Connections of the pretectum in the catJournal of Comparative Neurology, 1977
- Topographic organization of the projections from cortical areas 17, 18, and 19 onto the thalamus, pretectum and superior colliculus in the catJournal of Comparative Neurology, 1977