Kinetics of the oxidation of reduced nicotinamide adenine dinucleotide by horseradish peroxidase compounds I and II

Abstract
The transient state kinetics of the oxidation of reduced nicotinamide adenine dinucleotide (NADH) by horseradish peroxidase compound I and II (HRP-I and HRP-II) was investigated as a function of pH at 25.0 °C in aqueous solutions of ionic strength 0.11 using both a stopped-flow apparatus and a conventional spectrophotometer. In agreement with studies using many other substrates, the pH dependence of the HRP-I–NADH reaction can be explained in terms of a single ionization of pKa = 4.7 ± 0.5 at the active site of HRP-I. Contrary to studies with other substrates, the pH dependence of the HRP-H–NADH reaction can be interpreted in terms of a single ionization with pKa of 4.2 ± 1.4 at the active site of HRP-II. An apparent reversibility of the HRP-II–NADH reaction was observed. Over the pH range of 4–10 the rate constant for the reaction of HRP-I with NADH varied from 2.6 × 105 to5.6 × 102 M−1 s−1 and of HRP-II with NADH varied from 4.4 × 104 to 4.1 M−1 s−1. These rate constants must be taken into consideration to explain quantitatively the oxidase reaction of horseradish peroxidase with NADH.