A Property of Orthogonal Polynomial Families with Polynomial Duals
- 1 September 1984
- journal article
- Published by Society for Industrial & Applied Mathematics (SIAM) in SIAM Journal on Mathematical Analysis
- Vol. 15 (5) , 1043-1054
- https://doi.org/10.1137/0515081
Abstract
We show that for those discrete orthogonal polynomial families, ${ {p_i (mu (x))} }$, that have polynomial duals, the “finite convolution-type integral” operator, $sum
olimits_{y = 0}^M {w(y)sum_{i = 0}^L {p_i (mu (x))} } p_i {{(mu (y))} / {h_i }}$, commutes with a second order difference operator.
Keywords
This publication has 15 references indexed in Scilit:
- A new property of reproducing kernels for classical orthogonal polynomialsJournal of Mathematical Analysis and Applications, 1983
- Chopped Orthogonal Polynomial Expansions—Some Discrete CasesSIAM Journal on Algebraic Discrete Methods, 1983
- Differential Operators Commuting with Finite Convolution Integral Operators: Some Nonabelian ExamplesSIAM Journal on Applied Mathematics, 1982
- Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty-V: The Discrete CaseBell System Technical Journal, 1978
- Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - IV: Extensions to Many Dimensions; Generalized Prolate Spheroidal FunctionsBell System Technical Journal, 1964
- Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty-III: The Dimension of the Space of Essentially Time- and Band-Limited SignalsBell System Technical Journal, 1962
- Orthogonale Polynomsysteme als L sungen Sturm-Liouvillescher DifferenzengleichungenMonatshefte für Mathematik, 1962
- Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - IIBell System Technical Journal, 1961
- Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - IBell System Technical Journal, 1961
- Über Sturm-Liouvillesche PolynomsystemeMathematische Zeitschrift, 1929