Abstract
Cyclopropylamine acted as a mechanism-based inhibitor of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans. The protein-bound quinone cofactor of this enzyme was rapidly reduced by addition of a stoichiometric amount of cyclopropylamine, but this compound did not serve as a substrate for the enzyme in the steady-state kinetic assay. Time-dependent inactivation of the enzyme by cyclopropylamine was observed only in the presence of a reoxidant. Saturation behavior was observed, and values of KI of 3.9 microM and K(inact) of 1.7 min-1 were determined. Enzyme inactivation was irreversible, as no restoration of activity was evident after gel filtration of methylamine dehydrogenase which had been incubated with cyclopropylamine in the presence of a reoxidant. The inactivated enzyme exhibited an altered absorption spectrum. Electrophoretic analysis of inactivated methylamine dehydrogenase indicated that covalent cross-linking of the alpha and beta subunits of this alpha 2 beta 2 oligomeric enzyme had occurred and that the quinone cofactor had been modified. A mechanism for this inhibition is proposed which is based upon the data presented and is consistent with the available structural information on methylamine dehydrogenase.

This publication has 17 references indexed in Scilit: