Induction of splice correction by cell‐penetrating peptide nucleic acids
- 10 August 2006
- journal article
- research article
- Published by Wiley in The Journal of Gene Medicine
- Vol. 8 (10) , 1262-1273
- https://doi.org/10.1002/jgm.950
Abstract
Background Directing splicing using oligonucleotides constitutes a promising therapeutic tool for a variety of diseases such as β‐thalassemia, cystic fibrosis, and certain cancers. The rationale is to block aberrant splice sites, thus directing the splicing of the pre‐mRNA towards the desired protein product. One of the difficulties in this setup is the poor bioavailability of oligonucleotides, as the most frequently used transfection agents are unsuitable for in vivo use. Here we present splice‐correcting peptide nucleic acids (PNAs), tethered to a variety of cell‐penetrating peptides (CPPs), evaluating their mechanism of uptake and ability to correct aberrant splicing. Methods HeLa cells stably expressing luciferase containing an aberrant splice site were used. A previously described PNA sequence, capable of correcting the aberrant splicing, was conjugated to the CPPs, Tat, penetratin and transportan, via a disulfide bridge. The ability of the CPP‐PNA conjugates to correct splicing was measured, and membrane disturbance and cell viability were evaluated using LDH leakage and WST‐1 assays. Lysosomotropic agents, inhibition of endocytosis at 4 °C and confocal microscopy were used to investigate the importance of endocytosis in the uptake of the cell‐penetrating PNAs. Results All the three CPPs were able to promote PNA translocation across the plasma membrane and induce splice correction. Transportan (TP) was the most potent vector and significantly restored splicing in a concentration‐dependent manner. Interestingly, TP also rendered a concentration‐dependent splice correction in serum, in contrast to Tat and penetratin. Addition of the lysosomotrophic agent chloroquine increases the splice correction efficacy of the CPP‐PNA conjugates up to 4‐fold, which together with experiments at 4 °C and the visual information from confocal microscopy, indicate that the mechanism of uptake responsible for internalization of CPP‐PNA conjugates is mainly endocytic. Finally, co‐localization studies with dextran further indicate that conjugates, at least in the case of TP, internalize via endocytosis and in particular macropinocytosis. Conclusions These data demonstrate that CPPs can be used for the delivery of splice‐correcting PNAs, with potential to be used as a therapeutic approach for regulating splicing in a variety of diseases. Transportan presents itself as the overall most suitable vector in this study, generating the most efficient conjugates for splice correction. Copyright © 2006 John Wiley & Sons, Ltd.Keywords
This publication has 45 references indexed in Scilit:
- Cell Transduction Pathways of TransportansBioconjugate Chemistry, 2005
- Characterisation of cell‐penetrating peptide‐mediated peptide deliveryBritish Journal of Pharmacology, 2005
- Endosome disruption enhances the functional nuclear delivery of Tat-fusion proteinsBiochemical and Biophysical Research Communications, 2004
- Cellular Uptake of Antisense Morpholino Oligomers Conjugated to Arginine-Rich PeptidesBioconjugate Chemistry, 2004
- Cell Membrane Lipid Rafts Mediate Caveolar Endocytosis of HIV-1 Tat Fusion ProteinsJournal of Biological Chemistry, 2003
- Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivoNature Biotechnology, 1998
- Effect of serum components on the physico-chemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cellsBiochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1998
- A Combined Assay of Cell Viability and in Vitro Cytotoxicity with a Highly Water-Soluble Tetrazolium Salt, Neutral Red and Crystal Violet.Biological & Pharmaceutical Bulletin, 1996
- Sequence-Selective Recognition of DNA by Strand Displacement with a Thymine-Substituted PolyamideScience, 1991
- Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages.The Journal of cell biology, 1981