Gravitational radiation from first-order phase transitions
- 15 March 1994
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review D
- Vol. 49 (6) , 2837-2851
- https://doi.org/10.1103/physrevd.49.2837
Abstract
We consider the stochastic background of gravity waves produced by first-order cosmological phase transitions from two types of sources: colliding bubbles and hydrodynamic turbulence. First we discuss the fluid mechanics of relativistic spherical combustion. We then numerically collide many bubbles expanding at a velocity and calculate the resulting spectrum of gravitational radiation in the linearized gravity approximation. Our results are expressed as simple functions of the mean bubble separation, the bubble expansion velocity, the latent heat, and the efficiency of converting latent heat to kinetic energy of the bubble walls. A first-order phase transition is also likely to excite a Kolmogoroff spectrum of turbulence. We estimate the gravity waves produced by such a spectrum of turbulence and find that the characteristic amplitude of the gravity waves produced is comparable to that from bubble collisions. Finally, we apply these results to the electroweak transition. Using the one-loop effective potential for the minimal electroweak model, the characteristic amplitude of the gravity waves produced is at a characteristic frequency of 4.1 × Hz corresponding to in gravity waves, far too small for detection. Gravity waves from more strongly first-order phase transitions, including the electroweak transition in nonminimal models, have better prospects for detection, though probably not by LIGO.
Keywords
All Related Versions
This publication has 28 references indexed in Scilit:
- Gravitational radiation from colliding vacuum bubbles: Envelope approximation to many-bubble collisionsPhysical Review D, 1993
- Instability and subsequent evolution of electroweak bubblesPhysical Review Letters, 1992
- Gravitational waves from first-order cosmological phase transitionsPhysical Review Letters, 1992
- Gravitational radiation from colliding vacuum bubblesPhysical Review D, 1992
- Relic gravitational waves and extended inflationPhysical Review Letters, 1990
- Cosmic separation of phasesPhysical Review D, 1984
- Deflagrations and detonations as a mechanism of hadron bubble growth in supercooled quark-gluon plasmasNuclear Physics B, 1984
- Relativistic detonation waves and bubble growth in false vacuum decayPhysical Review D, 1982
- Fate of the false vacuum. II. First quantum correctionsPhysical Review D, 1977
- Fate of the false vacuum: Semiclassical theoryPhysical Review D, 1977