Minimax design of neural net controllers for highly uncertain plants

Abstract
This paper discusses the use of evolutionary programming (EP) for computer-aided design and testing of neural controllers applied to problems in which the system to be controlled is highly uncertain. Examples include closed-loop control of drug infusion and integrated control of HVAC/lighting/utility systems in large multi-use buildings. The method is described in detail and applied to a modified Cerebellar Model Arithmetic Computer (CMAC) neural network regulator for systems with unknown time delays. The design and testing problem is viewed as a game, in that the controller is chosen with a minimax criterion i.e., minimize the loss associated with its use on the worst possible plant. The technique permits analysis of neural strategies against a set of feasible plants. This yields both the best choice of control parameters and identification of that plant which is most difficult for the best controller to handle.

This publication has 11 references indexed in Scilit: