In Vivo Humoral Immune Responses to Isolated Pneumococcal Polysaccharides Are Dependent on the Presence of Associated TLR Ligands

Abstract
We determined whether T cell-independent Ig isotype responses to isolated pneumococcal polysaccharides (PPS) required TLR signaling in vivo. IgG anti-PPS responses to PPS3, PPS14, and C-polysaccharide (C-PS) were virtually undetectable in TLR2−/− mice, whereas specific IgM induction was variably reduced compared with wild-type mice. All PPS-containing preparations induced IL-6 and TNF-α from wild-type, but not TLR2−/−, macrophages. TLR2 activity was distinct from that of PPS, in that it was phenol extractable. Immunization of wild-type mice with phenol-extracted PPS14 also resulted in a marked reduction in the IgG, although not the IgM-anti-PPS14, response compared with untreated PPS14. The commercial 23-valent PPS vaccine, Pneumovax-23 also contained TLR ligands (TLR2 and TLR4), which were absolutely critical for the IgG-inducing activity of the vaccine in mice. Finally, the commercial pneumococcal conjugate vaccine, Prevnar, contained a TLR2 ligand(s) that substantially enhanced both the primary and secondary anti-PPS responses in mice, especially the type 1 IgG isotypes. These data strongly suggest the absolute need for a distinct, TLR-dependent second signal for inducing in vivo IgG T cell-independent humoral immune responses to isolated pneumococcal polysaccharide Ags and highlight the potential importance of previously unappreciated copurified and/or contaminating TLR ligands in PPS vaccine preparations.

This publication has 37 references indexed in Scilit: