Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics

Abstract
Markovian state models (MSMs) are a convenient and efficient means to compactly describe the kinetics of a molecular system as well as a formalism for using many short simulations to predict long time scale behavior. Building a MSM consists of grouping the conformations into states and estimating the transition probabilities between these states. In a previous paper, we described an efficient method for calculating the uncertainty due to finite sampling in the mean first passage time between two states. In this paper, we extend the uncertainty analysis to derive similar closed-form solutions for the distributions of the eigenvalues and eigenvectors of the transition matrix, quantities that have numerous applications when using the model. We demonstrate the accuracy of the distributions on a six-state model of the terminally blocked alanine peptide. We also show how to significantly reduce the total number of simulations necessary to build a model with a given precision using these uncertainty estimates for the blocked alanine system and for a 2454-state MSM for the dynamics of the villin headpiece.