Body composition and energetic efficiency in two lines of mice selected for rapid growth rate and their F1 crosses

Abstract
Correlated responses to selection for increased growth rate were compared in two mouse populations (M16 and H6) of distinct genetic origin. Traits studied were body composition, feed intake, constituent gains and energetic efficiency. When compared with their respective controls (ICR and C2) at 6 and 9 weeks of age, body weight increased more in M16 (57%and 69 % of the control mean) than in H6 (40 % and 34%). The M16 showed correlated responses in fat percent of 2.6% (P <.05), 8.4% (P <.01) and 11.2% (P <.01) at 3, 6 and 9 weeks, respectively, whereas corresponding values in H6 were −2.4% (P <.05), 3.3% (P <.05) and 2.09 % (P >.05). The correlated responses in fat percent were 2.7 and 4.7 times higher in M16 than H6 at 6 and 9 weeks. The regression of ln fat weight on ln empty body weight was larger in M16 (P <.05) compared to ICR and larger (P <.01) in H6 compared to C2. Both M16 and H8 exhibited positive correlated responses from 3 to 6 weeks of age in feed intake and gain and efficiency in fat, protein, calories and ash; fat and caloric gain and efficiency exhibited higher correlated responses in M16 than H6. During the 6- to 9-week interval, the M16 population continued to evince positive correlated responses in gains and efficiencies of fat, protein and calories, whereas H6 did not. Several possible explanations are presented to account for the differences in correlated responses between the selected populations. Partitioning of correlated response differences between M16 and H6 into average direct and average maternal genetic effects indicated that average direct genetic effects, favoring M16, were responsible for the major difference between the selected populations. Direct heterosis in F1 crosses of the selected populations were generally not significant, although there was a tendency for fat percent and fat weight to show heterosis.