A GaAsxP1−x/GaP strained-layer superlattice

Abstract
Strained−layer superlattices form a broad new class of semiconductor materials with tailorable electronic properties. We have succeeded in growing a GaAsxP1−x/GaP(100) strained−layer superlattice (SLS). The structure was grown by alternate metalorganic chemical vapor deposition of thin (60 Å)layers (20 each) of GaAs0.4P0.6 and GaP. These layers were grown onto a GaAsxP1−x layer which was graded in composition from x = 0 (composition of underlying GaP substrate)to x = 0 (average composition of the SLS). Photoluminescense studies of the SLS were carried out to determine the optical band gap. At T = 78 K, the spectrum shows a dominant band−edge peak at 2.03 eV as well as weaker peaks at higher energies. Tight binding and effective mass calculations, also carried out, predict a direct band gap (due to zone folding) of 2.02 eV and higher lying transition energies which are in good agreement with these data.

This publication has 12 references indexed in Scilit: