Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins
- 4 January 2000
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 97 (1) , 151-156
- https://doi.org/10.1073/pnas.97.1.151
Abstract
Fast excitation-driven fluctuations in the fluorescence emission of yellow-shifted green fluorescent protein mutants T203Y and T203F, with S65G/S72A, are discovered in the 10 −6 –10 −3 -s time range, by using fluorescence correlation spectroscopy at 10 −8 M. This intensity-dependent flickering is conspicuous at high pH, with rate constants independent of pH and viscosity with a minor temperature effect. The mean flicker rate increases linearly with excitation intensity for at least three decades, but the mean dark fraction of the molecules undergoing these dynamics is independent of illumination intensity over ≈6 × 10 2 to 5 × 10 6 W/cm 2 . These results suggest that optical excitation establishes an equilibration between two molecular states of different spectroscopic properties that are coupled only via the excited state as a gateway. This reversible excitation-driven transition has a quantum efficiency of ≈10 −3 . Dynamics of external protonation, reversibly quenching the fluorescence, are also observed at low pH in the 10- to 100-μs time range. The independence of these two bright–dark flicker processes implies the existence of at least two separate dark states of these green fluorescent protein mutants. Time-resolved fluorescence measurements reveal a single exponential decay of the excited state population with 3.8-ns lifetime, after 500-nm excitation, that is pH independent. Our fluorescence correlation spectroscopy results are discussed in terms of recent theoretical studies that invoke isomerization of the chromophore as a nonradiative channel of the excited state relaxation.Keywords
This publication has 27 references indexed in Scilit:
- Internal Dynamics of Green Fluorescent ProteinThe Journal of Physical Chemistry B, 1999
- Structure and rotation barriers for ground and excited states of the isolated chromophore of the green fluorescent proteinChemical Physics Letters, 1998
- THE GREEN FLUORESCENT PROTEINAnnual Review of Biochemistry, 1998
- Resistance to Leishmania major in MiceScience, 1996
- Crystal Structure of the Aequorea victoria Green Fluorescent ProteinScience, 1996
- Improved Green Fluorescent Protein by Molecular Evolution Using DNA ShufflingNature Biotechnology, 1996
- Single-molecule detection by two-photon-excited fluorescenceOptics Letters, 1995
- Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental studyThe Journal of Physical Chemistry, 1995
- Renaturation of Aequorea green-fluorescent proteinBiochemical and Biophysical Research Communications, 1981
- Thermodynamic Fluctuations in a Reacting System—Measurement by Fluorescence Correlation SpectroscopyPhysical Review Letters, 1972