The Effect of Nucleus Pulposus Crosslinking and Glycosaminoglycan Degradation on Disc Mechanical Function
- 20 May 2006
- journal article
- research article
- Published by Springer Nature in Biomechanics and Modeling in Mechanobiology
- Vol. 6 (1-2) , 13-20
- https://doi.org/10.1007/s10237-006-0043-0
Abstract
Altered mechanical loading, secondary to biochemical changes in the nucleus pulposus, is a potential mechanism in disc degeneration. An understanding of the role of this altered mechanical loading is only possible by separating the mechanical and biological effects of early nucleus pulposus changes. The objective of this study was to quantify the mechanical effect of decreased glycosaminoglycans (GAG) and increased crosslinking in the nucleus pulposus using in vitro rat lumbar discs. Following initial mechanical testing the discs were injected according to the four treatment groups: PBS control, chondroitinase-ABC (ChABC) for GAG degradation, genipin (Gen) for crosslinking, or a combination of chondroitinase and genipin (ChABC+Gen). After treatment the discs were again mechanically tested, followed by histology or biochemistry. Neutral zone mechanical properties were changed by approximately 20% for PBS, ChABC, and ChABC+Gen treatments (significant only for PBS in a paired comparison). These trends were reversed with genipin crosslinking alone. With ChABC treatment the effective compressive modulus increased and the GAG content decreased; with the combination of ChABC+Gen the mechanics and GAG content were unchanged. Degradation of nucleus pulposus GAG alters disc axial mechanics, potentially contributing to the degenerative cascade. Crosslinking is unlikely to contribute to degeneration, but may be a potential avenue of treatment.Keywords
This publication has 44 references indexed in Scilit:
- Nucleus pulposus glycosaminoglycan content is correlated with axial mechanics in rat lumbar motion segmentsJournal of Orthopaedic Research, 2006
- Young Investigator Award Winner: Validation of the Mouse and Rat Disc as Mechanical Models of the Human Lumbar DiscSpine, 2004
- Biomechanical Benefits of Crosslink Augmentation in Spinal DiscsPublished by ASME International ,2003
- Changes in Collagen Cross-Linking in Degenerative Disc Disease and ScoliosisSpine, 1998
- ‘STRESS’ DISTRIBUTIONS INSIDE INTERVERTEBRAL DISCSThe Journal of Bone and Joint Surgery. British volume, 1996
- Aging and Degeneration of the Human Intervertebral DiscSpine, 1995
- Radiographic and Histologic Effects of Chondroitinase ABC on Normal Canine Lumbar Intervertebral DiscSpine, 1991
- The heterogeneity of the non-aggregating proteoglycans of the human intervertebral discBiochemical Journal, 1987
- A Direct Spectrophotometric Microassay for Sulfated Glycosaminoglycans in Cartilage CulturesConnective Tissue Research, 1982
- Effects of fluid injection on mechanical properties of intervertebral discsJournal of Biomechanics, 1979