Circulating immunoreactive and bioassayable opsonic plasma fibronectin during experimental tumour growth

Abstract
Immunoreactive and bioassayable plasma fibronectin (opsonic α2 surface-binding (SB) glycoprotein) was measured during experimental Sarcoma-180 tumour growth in mice. Male C57BL/6 mice were challenged s.c. with 2 × 106 viable Sarcoma-180 tumour cells and evaluated sequentially in parallel with saline-injected controls over a 21-day experimental period. Before challenge, immunoreactive plasma fibronectin was 1050-1150 μg/ml. Minimal tumour growth occurred until 6 days after tumour challenge. There was then a rapid increase in primary tumour size, especially over the 7-14-day interval, with a plateau of growth over the 18-21-day interval. Immunoreactive plasma fibronectin was significantly (P < 0·05) raised at 3 and 7 days after tumour challenge. A rapid rise (P < 0·001) to 2816·6 ± 158·9 μg/ml was observed at 14 days followed by a modest decline at 21 days. Bioassayable opsonic activity increased (P < 0·5) with the rise in immunoreactive fibronectin 3 and 7 days after tumour challenge, but the rapid rise in immunoreactive fibronectin over the 7-14-day interval was associated with a significant (P < 0·5) fall in bioassayable opsonic activity. Thus, the rapid rise in immunoreactive plasma fibronectin parallels the rapid rate of tumour growth, but is associated with a fall in opsonically active plasma fibronectin. Dissociation between immunoreactive and opsonically active plasma fibronectin may be mediated by inhibition and/or alteration of circulating fibronectin during rapid tumour growth. Alternatively, it may reflect increased release of antigenically related protein (i.e. cell-surface fibronectin) during rapid tumour growth, which may have limited biological opsonic activity.