Massively parallel adhesion and reactivity measurements using simple and inexpensive magnetic tweezers

Abstract
Single molecule techniques to measure biological molecules and reactions have provided an alternative way to probe and visualize bond characteristics and reaction dynamics. However, these techniques, such as atomic force microscopy, optical tweezers, and micropipettes often require expensive and complicated equipment and are very time intensive, because each measurement gives the results of one-single reaction or a property of one-single molecule. Here, we report on a technique that allows for massively parallel measurements on many individual single molecules in microfluidic systems. We demonstrate the effectiveness of a simple, robust, inexpensive apparatus, by using it to differentiate between deoxyribonucleic acid (DNA) assemblies that are merely annealed from others that are ligated, and by measuring the rate at which annealed DNA denatures as function of temperature.