Effects of biotic and abiotic stress on induced accumulation of terpenes and phenolics in red pines inoculated with bark beetle-vectored fungus
- 1 May 1995
- journal article
- research article
- Published by Springer Nature in Journal of Chemical Ecology
- Vol. 21 (5) , 601-626
- https://doi.org/10.1007/bf02033704
Abstract
This study characterized the chemical response of healthy red pine to artificial inoculation with the bark beetle-vectored fungusLeptographium terebrantis. In addition, we sought to determine whether stress altered this induced response and to understand the implications of these interactions to the study of decline diseases. Twenty-five-year-old trees responded to mechanical wounding or inoculation withL. terebrantis by producing resinous reaction lesions in the phloem. Aseptically wounded and wound-inoculated phloem contained higher concentrations of phenolics than did constitutive tissue. Trees inoculated withL. terebrantis also contained higher concentrations of six monoterpenes,α-pinene,β-pinene, 3-carene, limonene, camphene, and myrcene, and higher total monoterpenes than did trees that were mechanically wounded or left unwounded. Concentrations of these monoterpenes increased with time after inoculation. Total phenolic concentrations in unwounded stem tissue did not differ between healthy and root-diseased trees. Likewise, constitutive monoterpene concentrations in stem phloem were similar between healthy and root-diseased trees. However, when stem phloem tissue was challenged with fungal inoculations, reaction tissue from root-diseased trees contained lower concentrations ofα-pinene, the predominant monoterpene in red pine, than did reaction tissue from healthy trees. Seedlings stressed by exposure to low light levels exhibited less extensive induced chemical changes when challenge inoculated withL. terebrantis than did seedlings growing under higher light. Stem phloem tissue in these seedlings contained lower concentrations ofα-pinene than did nonstressed seedlings also challenge inoculated withL. terebrantis. It is hypothesized that monoterpenes and phenolics play a role in the defensive response of red pine against insect-fungal attack, that stress may predispose red pine to attack by insect-fungal complexes, and that such interactions are involved in red pine decline disease. Implications to plant defense theory and interactions among multiple stress agents in forest decline are discussed.Keywords
This publication has 32 references indexed in Scilit:
- Metabolic costs of terpenoid accumulation in higher plantsJournal of Chemical Ecology, 1994
- Distribution and variation of extractable total phenols and tannins in the logs of four conifers after 1 year on the groundCanadian Journal of Forest Research, 1989
- Computation of response factors for quantitative analysis of monoterpenes by gas-liquid chromatographyJournal of Chemical Ecology, 1988
- Effects of Terpenoid Compounds on Growth of Symbiotic Fungi Associated with the Southern Pine BeetlePhytopathology®, 1987
- Defensive mechanisms of loblolly and shortleaf pine against attack by southern pine beetle,Dendroctonus frontalis Zimmermann, and its fungal associate,Ceratocystis minor (Hedgecock) HuntJournal of Chemical Ecology, 1986
- Growth-differentiation balance: A basis for understanding southern pine beetle-tree interactionsForest Ecology and Management, 1986
- ACCUMULATION OF MONOTERPENES AND ASSOCIATED VOLATILES FOLLOWING INOCULATION OF GRAND FIR WITH A FUNGUS TRANSMITTED BY THE FIR ENGRAVER, SCOLYTUS VENTRALIS (COLEOPTERA: SCOLYTIDAE)The Canadian Entomologist, 1982
- HOST RESISTANCE TO THE FIR ENGRAVER BEETLE, SCOLYTUS VENTRALIS (COLEOPTERA: SCOLYTIDAE): 2. REPELLENCY OF ABIES GRANDIS RESINS AND SOME MONOTERPENESThe Canadian Entomologist, 1977
- Microsite Effects on Oleoresin Exudation Pressure of Large Loblolly PinesEcology, 1968
- Inhibition of growth of blue stain fungi by wood extractivesCanadian Journal of Botany, 1968