Metabolic interaction and disposition of methyl ethyl ketone andm-xylene in rats at single and repeated inhalation exposures
- 1 January 1991
- journal article
- research article
- Published by Taylor & Francis in Xenobiotica
- Vol. 21 (1) , 53-63
- https://doi.org/10.3109/00498259109039450
Abstract
1. Rats were exposed to m-xylene (300 ppm) and methyl ethyl ketone (MEK, 600 ppm) vapour, separately and in combination. 2. Repeated exposures to m-xylene enhanced liver drug-metabolizing capacity, whereas MEK showed no effects. After mixed exposure the cytochrome P-450-dependent monooxygenase activities were additively or synergistically induced. 3. In the presence of MEK the overall metabolism of xylene was strongly inhibited both after single and repeated exposures, an effect accompanied by elevation of xylene concentration in blood (18-29%) and fat (25-32%). 4. The 24-h excretion of the urine metabolites of m-xylene was decreased by 22-24% in mixed exposures: the excretion of methylhippuric acid was decreased (29%), but that of 2,4-dimethylphenol increased (9-35%). 5. After repeated inhalation exposures the excretion of xylene metabolites in urine was consistently higher, whereas the concentrations of xylene in fat (but not the concentration of MEK) were lower than after a single treatment, conceivably due to accelerated metabolic clearance of xylene. 6. Thioether excretion in urine was enhanced in xylene-treated rats (7-13-fold), but was not influenced by the induced changes in the metabolism of xylene. Xylene inhalation caused liver GSH to decrease slightly (10%), as did inhalation of MEK, but the latter did not enhance the excretion of thioethers. 7. MEK is a potent inhibitor of the side-chain oxidation of m-xylene producing methylhippuric acid, but not of its ring oxidation to 2,4-dimethylphenol, and exhibits a synergistic inducing effect on liver enzymes responsible for the oxidation of m-xylene. The increased ring oxidation of m-xylene was not associated with increased production of reactive metabolites indicated by GSH-depletion or thioether formation We wish to thank Mr Paavo Mäkelä and Mr Yrjö Peltonen for conducting the inhalation exposures, Ms Ulla Peltonen and Ms Ritva Tauriainen for the chemical and biochemical analyses, and Prof Olavi Pelkonen for his constructive comments.Keywords
This publication has 29 references indexed in Scilit:
- Metabolism of antipyrine andm-xylene in rats after prolonged pretreatment with xylene alone or xylene with ethanol, phenobarbital or 3-methylcholanthreneXenobiotica, 1989
- Ethoxy-, pentoxy- and benzyloxyphenoxazones and homologues: a series of substrates to distinguish between different induced cytochromes P-450Biochemical Pharmacology, 1985
- Dose-response relationships in ketone-induced potentiation of chloroform hepato- and nephrotoxicityToxicology and Applied Pharmacology, 1984
- Metabolism and disposition of simultaneously inhaled m-xylene and ethylbenzene in the ratToxicology and Applied Pharmacology, 1984
- Dose-related effects ofm-xylene inhalation on the xenobiotic metabolism of the ratXenobiotica, 1982
- Pharmacokinetics of 2-butanol and its metabolites in the ratJournal of Pharmacokinetics and Biopharmaceutics, 1981
- Potentiation of CCl4 of hepatotoxicity in rats by a metabolite of 2-butanone: 2,3-butanediolToxicology, 1979
- Occupational chronic exposure to organic solventsInternationales Archiv für Arbeitsmedizin, 1979
- Experimental studies on hydrocarbon neuropathies induced by methyl-ethyl-ketone (MEK)Zeitschrift für Neurologie, 1978
- Characterization of the metabolites of methyl n-butyl ketone, methyl iso-butyl ketone, and methyl ethyl ketone in guinea pig serum and their clearanceToxicology and Applied Pharmacology, 1976