A Tn21 terminal sequence within Tn501: complementation of tnpA gene function and transposon evolution

Abstract
The prokaryotic mercury-resistance transposon Tn501 contains a sequence, 80 nucleotides from one end, which is identical with an inverted terminal repeat (IR) of Tn21. This Tn21 IR sequence is used when Tn21 complements a TnpA- derivative of Tn501, but not when Tn501 is used for the complementation. Complementation by Tn1721 shows a preference for the normal Tn501 IRs. The element (Tn820) transposed when Tn21 is used to complement a Hg- TnpR- TnpA- Res- deletion mutant of Tn501 contains the Tn21 IR sequence at one terminus and a Tn501 IR at the other. Transposition of Tn820 can be complemented by Tn501 and Tn1721, but at a much lower frequency than transposition of the parental element (Tn819) which has two Tn501 IRs. The relationship between the transposition functions of Tn501, Tn21 and Tn1721, and available nucleotide sequence data suggest that Tn501 evolved by the transposition of a Tn21-like element into another transposable element (similar to that found within Tn1721) followed by deletion of the Tn21-like transposition functions.