Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson's disease
- 24 October 2009
- journal article
- research article
- Published by Portland Press Ltd. in Biochemical Journal
- Vol. 424 (1) , 47-60
- https://doi.org/10.1042/bj20091035
Abstract
The LRRK2 (leucine-rich repeat protein kinase-2) is mutated in a significant number of Parkinson's disease patients, but little is known about its regulation and function. A common mutation changing Gly2019 to serine enhances catalytic activity, suggesting that small-molecule inhibitors might have utility in treating Parkinson's disease. We employed various approaches to explore the substrate-specificity requirements of LRRK2 and elaborated a peptide substrate termed Nictide, that had 20-fold lower Km and nearly 2-fold higher Vmax than the widely deployed LRRKtide substrate. We demonstrate that LRRK2 has marked preference for phosphorylating threonine over serine. We also observed that several ROCK (Rho kinase) inhibitors such as Y-27632 and H-1152, suppressed LRRK2 with similar potency to which they inhibited ROCK2. In contrast, GSK429286A, a selective ROCK inhibitor, did not significantly inhibit LRRK2. We also identified a mutant LRRK2[A2016T] that was normally active, but resistant to H-1152 and Y-27632, as well as sunitinib, a structurally unrelated multikinase inhibitor that, in contrast with other compounds, suppresses LRRK2, but not ROCK. We have also developed the first sensitive antibody that enables measurement of endogenous LRRK2 protein levels and kinase activity as well as shRNA (short hairpin RNA) methods to reduce LRRK2 expression. Finally, we describe a pharmacological approach to validate whether substrates are phosphorylated by LRRK2 and use this to provide evidence that LRRK2 may not be rate-limiting for the phosphorylation of the proposed substrate moesin. The findings of the present study will aid with the investigation of LRRK2.Keywords
This publication has 43 references indexed in Scilit:
- Mst4 and Ezrin Induce Brush Borders Downstream of the Lkb1/Strad/Mo25 Polarization ComplexDevelopmental Cell, 2009
- LOK is a major ERM kinase in resting lymphocytes and regulates cytoskeletal rearrangement through ERM phosphorylationProceedings of the National Academy of Sciences, 2009
- Identification of compounds that inhibit the kinase activity of leucine-rich repeat kinase 2Biochemical and Biophysical Research Communications, 2009
- Leucine-Rich Repeat Kinase 2 Mutations and Parkinson's Disease: Three QuestionsASN Neuro, 2009
- Zeroing in on LRRK2-linked pathogenic mechanisms in Parkinson's diseaseBiochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2008
- Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control studyThe Lancet Neurology, 2008
- Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cellsThe Journal of cell biology, 2008
- The selectivity of protein kinase inhibitors: a further updateBiochemical Journal, 2007
- LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activityBiochemical Journal, 2007
- enoLOGOS: a versatile web tool for energy normalized sequence logosNucleic Acids Research, 2005