Abstract
Photon spectra from a nominally 6 MV beam under standard clinical conditions and at higher and lower beam qualities have been derived from narrow-beam transmission measurements using a previously published three-parameter reconstruction model. Estimates of the maximum photon energy present in each spectrum were derived using a reduced number of model parameters. An estimate of the maximum contribution of background, or room, scatter to transmission measurements has been made for this study and is shown to be negligible in terms of the quality index and percentage depth-dose of the derived spectra. Percentage depth-dose data for standard beam conditions derived from the reconstructed spectrum were found to agree with direct measurements to within approximately 1% for depths of up to 25 cm in water. Quality indices expressed in terms of TPR10(20) for all spectra were found to agree with directly measured values to within 1%. The experimental procedure and reconstruction model are therefore shown to produce photon spectra whose derived quality indices and percentage depth-dose values agree with direct measurement to within expected experimental uncertainty.