The chemical oxidation of hydrogen-terminated silicon (111) surfaces in water studied in situ with Fourier transform infrared spectroscopy

Abstract
The chemical oxidation of hydrogen‐terminated silicon (111) surfaces in water was studied in situ with Fourier transform IR spectroscopy in the multiple total internal reflection mode. On the basis of measurements of the absorbance of the Si‐H and Si‐O‐Si vibrations as a function of time it is concluded that reactions involving the oxidation of silicon hydride and the formation of silicon oxide are coupled. The decrease in the hydride coverage and increase in the oxide coverage are linear functions of ln(t). The time dependence of oxide growth is explained in terms of electrostatic and mechanical changes at the Si/water interface.