Patterns of EMG activity of rat plantaris muscle during swimming and other locomotor activities

Abstract
The purpose of the study was to examine the patterns of electromyographic (EMG) activity of the rat plantaris during loaded swimming in comparison with other locomotor activities. Five female Sprague-Dawley rats were implanted with chronic bipolar electrodes in the plantaris muscle of the left hindlimb under pentobarbital anesthesia. Characteristics of EMG bursts recorded while the conscious rat was performing treadmill walking (0.24 m/s) were stable and reproducible 10–14 days postsurgery. Following this stabilization period, records of EMG activity were obtained during walking, loaded swimming (6.5 g attached to tail), and several other locomotor tasks. Compared to walking, EMG bursts during loaded swimming were significantly higher (67%) in maximum amplitude, one-third as long in duration, and occurred at a greater rate (4.4 vs. 1.7 bursts/s, P less than 0.05). Swimming bursts were of higher amplitudes than those of all other activities examined and reached 65% of the EMG amplitude recorded following stimulation of the sciatic nerve with supramaximal voltage. The addition of a mass to the animal's tail during swimming did not increase the EMG burst amplitudes but resulted in a higher frequency of bursts. Compared with treadmill walking, loaded swimming elicited burst of high variability in amplitude. Swimming in the rat involves rapid, extensive activation of plantaris, thus providing an exercise model to study the adaptability of the neuromuscular system to prolonged activity of this type.