The Role of Imaging and In Situ Biomechanical Testing in Assessing Pedicle Screw Pull-Out Strength
- 1 September 1996
- journal article
- Published by Wolters Kluwer Health in Spine
- Vol. 21 (17) , 1962-1968
- https://doi.org/10.1097/00007632-199609010-00004
Abstract
This study determined the predictive ability of quantitative computed tomography, dual energy x-ray absorptiometry, pedicular geometry, and mechanical testing in assessing the strength of pedicle screw fixation in an in vitro mechanical test of intra-pedicular screw fixation in the human cadaveric lumbar spine. To test several hypotheses regarding the relative predictive value of densitometry, pedicular geometry, and mechanical testing in describing pedicle screw pull-out. Previous investigations have suggested that mechanical testing, geometry, and densitometry, determined by quantitative computed tomography or dual energy x-ray absorptiometry, predict the strength of the screw-bone system. However, no study has compared the relative predictive value of these techniques. Forty-nine pedicle screw cyclic-combined flexion-extension moment-axial pull-out tests were performed on human cadaveric lumbar vertebrae. The predictive ability of quantitative computed tomography, dual energy x-ray absorptiometry, insertional torque, in situ stiffness, and pedicular geometry was assessed using multiple regression. Several variables correlated to force at failure. However, multiple regression analysis showed that bone mineral density of the pedicle determined by quantitative computed tomography, insertional torque, and in situ stiffness when used in combination resulted in the strongest prediction of pull-out force. No other measures provided additional predictive ability in the presence of these measures. Pedicle density determined by quantitative computed tomography when used with insertional torque and in situ stiffness provides the strongest predictive ability of screw pull-out. Geometric measures of the pedicle and density determined by dual energy x-ray absorptiometry do not provide additional predictive ability in the presence of these measures.Keywords
This publication has 19 references indexed in Scilit:
- Improved assessment of lumbar vertebral body strength using supine lateral dual-energy X-ray absorptiometryJournal of Bone and Mineral Research, 1994
- Stability of Transpedicle Screwing for the Osteoporotic SpineSpine, 1993
- Pedicle Screw Pullout StrengthSpine, 1993
- Pedicle Diameter Determined by Computed TomographySpine, 1992
- Mechanical Stability of the Pedicle Screw Fixation Systems for the Lumbar SpineSpine, 1992
- An Experimental Study on Transpedicular Screw Fixation in Relation to Osteoporosis of the Lumbar SpineSpine, 1991
- Importance of Bone Mineral Density in Instrumented Spine FusionsSpine, 1991
- Influence of Bone Mineral Density on the Fixation of Thoracolumbar Implants A Comparative Study of Transpedicular Screws, Laminar Hooks, and Spinous Process WiresSpine, 1990
- Morphometry of the Thoracic and Lumbar Spine Related to Transpedicular Screw Placement for Surgical Spinal FixationSpine, 1988
- Internal Fixation of the Lumbar Spine with Pedicle Screw PlatingClinical Orthopaedics and Related Research, 1986