THE OXIDATION OF DI-tertiary-BUTYL PEROXIDE
- 1 February 1961
- journal article
- Published by Canadian Science Publishing in Canadian Journal of Chemistry
- Vol. 39 (2) , 278-284
- https://doi.org/10.1139/v61-034
Abstract
The oxidation of di-t-butyl peroxide has been investigated in a static system at low conversion at 124 °C with sufficient oxygen present to suppress completely the formation of methane and ethane. The decomposition of the t-butoxy radical is unaffected by the presence of oxygen. A major product of the oxidation is formaldehyde whose yield rapidly approaches a stationary value. It is postulated that the major source of formaldehyde is the decomposition of methyl peroxy radicals, which may also abstract hydrogen from formaldehyde to form methyl hydroperoxide, and that this competition leads to the stationary concentration of formaldehyde actually observed. Methyl hydroperoxide was demonstrated to be unstable in the system and the predominant decomposition product was methanol, a compound also found in high yields in the oxidation. Experiments with added formaldehyde-C13 showed that formaldehyde can be converted to carbon monoxide in the system and indicated that formaldehyde was a likely precursor to the carbon monoxide found in the oxidation.Keywords
This publication has 10 references indexed in Scilit:
- PHOTOOXIDATION OF AZOMETHANE: IV. THE ROLE OF FORMALDEHYDECanadian Journal of Chemistry, 1961
- THE PHOTOOXIDATION OF AZOMETHANE. IIICanadian Journal of Chemistry, 1959
- THE PHOTOOXIDATION OF AZOMETHANE. IICanadian Journal of Chemistry, 1959
- THE REACTION OF METHYL RADICALS WITH FORMALDEHYDECanadian Journal of Chemistry, 1959
- A Study of the Methyl-Oxygen and the Methyl-Nitric Oxide Reactions by Flash Photolysis1Journal of the American Chemical Society, 1959
- The Oxidation of Methyl Radicals at Room TemperatureThe Journal of Physical Chemistry, 1959
- The oxidation of isobutaneTransactions of the Faraday Society, 1959
- The reaction of methyl radicals with oxygen and comparison with other third-order reactionsTransactions of the Faraday Society, 1957
- The Oxidation of Free Methyl RadicalsJournal of the American Chemical Society, 1951
- Spectrophotometric Method for Determining FormaldehydeIndustrial & Engineering Chemistry Analytical Edition, 1945