Ceramide-Induced Impairment of Endothelial Function Is Prevented by CuZn Superoxide Dismutase Overexpression

Abstract
Objective— Ceramide is an important intracellular second messenger that may also increase superoxide. The goal of this study was to determine whether overexpression of CuZn superoxide dismutase (SOD) protects against ceramide-induced increases in vascular superoxide and endothelial dysfunction. Methods and Results— Carotid arteries from CuZnSOD-transgenic (CuZnSOD-Tg) and nontransgenic littermates were examined in vitro. Immunohistochemistry confirmed that CuZnSOD protein was greater in carotid artery from CuZnSOD-Tg compared with nontransgenic mice. Ceramide ( N -acetyl- d -sphingosine; 1 and 10 μmol/L) produced concentration-dependent impairment ( P 0.05) on responses of carotid artery to ACh in CuZnSOD-Tg mice. Ceramide had no effect on nitroprusside- or papaverine-induced relaxation in CuZnSOD-Tg or nontransgenic mice. Ceramide increased superoxide in arteries from nontransgenic vessels, and this effect was prevented by polyethyleneglycol-SOD (50 U/mL) or overexpression of CuZnSOD. Conclusions— These results suggest that ceramide-induced increases in superoxide impair endothelium-dependent relaxation, and that select overexpression of the CuZn isoform of SOD prevents ceramide-induced oxidative stress in vessels.