Molecular evidence on the origin of wheat chromosomes 4A and 4B

Abstract
The genome allocation of the Triticum aestivum L. chromosomes denoted 4A and 4B was based on an erroneous inference. Since neither chromosome pairs with the chromosomes of putative ancestors of wheat, molecular tools were employed to clarify the origin of the two chromosomes. Disomic substitutions for T. aestivum chromosomes 4A or 4B by chromosomes 4 from T. speltoides (Tausch) Gren., a putative ancestor of the wheat B genome, T. longissimum (Schweinf. et Muschl.) Bowden (a close relative of T. speltoides), or T. monococcum L. ssp. aegilopoides (Link) Thell., a close relative of the ancestor of the wheat A genome, were produced. The ability of the substituted chromosome to compensate in the disomic substitution lines, the C-banding patterns of the chromosomes, electrophoretic alleles at the Adh-1 and Lpx-1 loci, and in situ hybridization with an interspersed repeated sequence all were consistent in showing that the chromosome previously denoted as 4A belongs to the B genome and the chromosome previously denoted as 4B is a rearranged chromosome of the A genome. Chromosome 4A is consequently reallocated to the B genome and chromosome 4B to the A genome in T. turgidum L. em. Morris et Sears and T. aestivum. To reflect the fact that the chromosome previously denoted as 4B has only a homoeologous relationship to chromosome 4A of T. urartu (the ancestor of the A genome in polyploid wheats), the chromosome is designated 4Aa.Key words: repeated nucleotide sequence, alcohol dehydrogenase, lipoxygenase, in situ hybridization, chromosome evolution.