Two-dimensional genome-scan identifies novel epistatic loci for essential hypertension
Open Access
- 16 March 2006
- journal article
- research article
- Published by Oxford University Press (OUP) in Human Molecular Genetics
- Vol. 15 (8) , 1365-1374
- https://doi.org/10.1093/hmg/ddl058
Abstract
It is well established that gene interactions influence common human diseases, but to date linkage studies have been constrained to searching for single genes across the genome. We applied a novel approach to uncover significant gene–gene interactions in a systematic two-dimensional (2D) genome-scan of essential hypertension. The study cohort comprised 2076 affected sib-pairs and 66 affected half-sib-pairs of the British Genetics of HyperTension study. Extensive simulations were used to establish significance thresholds in the context of 2D genome-scans. Our analyses found significant and suggestive evidence for loci on chromosomes 5, 9, 11, 15, 16 and 19, which influence hypertension when gene–gene interactions are taken into account (5q13.1 and 11q22.1, two-locus lod score=5.72; 5q13.1 and 19q12, two-locus lod score=5.35; 9q22.3 and 15q12, two-locus lod score=4.80; 16p12.3 and 16q23.1, two-locus lod score=4.50). For each significant and suggestive pairwise interaction, the two-locus genetic model that best fitted the data was determined. Regions that were not detected using single-locus linkage analysis were identified in the 2D scan as contributing significant epistatic effects. This approach has discovered novel loci for hypertension and offers a unique potential to use existing data to uncover novel regions involved in complex human diseases.Keywords
This publication has 34 references indexed in Scilit:
- Epistasis: too often neglected in complex trait studies?Nature Reviews Genetics, 2004
- Multilocus Analysis of Hypertension: A Hierarchical ApproachHuman Heredity, 2004
- Genome-wide linkage analysis of blood pressure under locus heterogeneityBMC Genomic Data, 2003
- Genome-wide mapping of human loci for essential hypertensionThe Lancet, 2003
- A Global Search Reveals Epistatic Interaction Between QTL for Early Growth in the ChickenGenome Research, 2003
- Genomewide Linkage Scan of Resting Blood PressureHypertension, 2002
- Blood pressure QTLs identified by genome-wide linkage analysis and dependence on associated phenotypesPhysiological Genomics, 2002
- A Statistical Framework for Quantitative Trait MappingGenetics, 2001
- Genome-Wide Epistatic Interaction Analysis Reveals Complex Genetic Determinants of Circadian Behavior in MiceGenome Research, 2001
- Loci on chromosomes 2 (NIDDM1) and 15 interact to increase susceptibility to diabetes in Mexican AmericansNature Genetics, 1999