Use of a Green Fluorescent Protein as a Marker for Human Immunodeficiency Virus Type 1 Infection

Abstract
We constructed a recombinant human immunodeficiency virus type 1 (HIV-1) provirus called R7-GFP that expresses a modified form of a green fluorescent protein (GFP) from the jellyfish Aequorea victoria by substituting GFP-coding sequences for Nef-coding sequences. Alanine was substituted for serine at amino acid position 65 in the modified GFP, resulting in markedly increased fluorescence at an excitation wavelength of 488 nm as compared to wild-type GFP. The replication kinetics of R7-GFP were identical to that measured with an isogenic, nef-negative strain lacking GFP. Expression of GFP by replication-competent HIV-1 allowed simultaneous quantitation of viral infection and cell surface CD4 levels, revealing rapid and nearly complete CD4 downregulation on R7-GFP-infected PBMCs.