Individual Participant Data Meta-Analysis for a Binary Outcome: One-Stage or Two-Stage?
Open Access
- 9 April 2013
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLOS ONE
- Vol. 8 (4) , e60650
- https://doi.org/10.1371/journal.pone.0060650
Abstract
Background A fundamental aspect of epidemiological studies concerns the estimation of factor-outcome associations to identify risk factors, prognostic factors and potential causal factors. Because reliable estimates for these associations are important, there is a growing interest in methods for combining the results from multiple studies in individual participant data meta-analyses (IPD-MA). When there is substantial heterogeneity across studies, various random-effects meta-analysis models are possible that employ a one-stage or two-stage method. These are generally thought to produce similar results, but empirical comparisons are few. Objective We describe and compare several one- and two-stage random-effects IPD-MA methods for estimating factor-outcome associations from multiple risk-factor or predictor finding studies with a binary outcome. One-stage methods use the IPD of each study and meta-analyse using the exact binomial distribution, whereas two-stage methods reduce evidence to the aggregated level (e.g. odds ratios) and then meta-analyse assuming approximate normality. We compare the methods in an empirical dataset for unadjusted and adjusted risk-factor estimates. Results Though often similar, on occasion the one-stage and two-stage methods provide different parameter estimates and different conclusions. For example, the effect of erythema and its statistical significance was different for a one-stage (OR = 1.35, ) and univariate two-stage (OR = 1.55, ). Estimation issues can also arise: two-stage models suffer unstable estimates when zero cell counts occur and one-stage models do not always converge. Conclusion When planning an IPD-MA, the choice and implementation (e.g. univariate or multivariate) of a one-stage or two-stage method should be prespecified in the protocol as occasionally they lead to different conclusions about which factors are associated with outcome. Though both approaches can suffer from estimation challenges, we recommend employing the one-stage method, as it uses a more exact statistical approach and accounts for parameter correlation.Keywords
This publication has 85 references indexed in Scilit:
- Individual participant data meta-analyses should not ignore clusteringJournal of Clinical Epidemiology, 2013
- Multivariate meta‐analysis: Potential and promiseStatistics in Medicine, 2011
- Systematically missing confounders in individual participant data meta‐analysis of observational cohort studiesStatistics in Medicine, 2009
- Meta‐analysis of continuous outcomes combining individual patient data and aggregate dataStatistics in Medicine, 2007
- Recent developments in meta‐analysisStatistics in Medicine, 2007
- What to add to nothing? Use and avoidance of continuity corrections in meta‐analysis of sparse dataStatistics in Medicine, 2004
- Issues in the selection of a summary statistic for meta‐analysis of clinical trials with binary outcomesStatistics in Medicine, 2002
- Advanced methods in meta‐analysis: multivariate approach and meta‐regressionStatistics in Medicine, 2002
- Individual patient‐ versus group‐level data meta‐regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly headStatistics in Medicine, 2002
- Meta-analysis in clinical trialsControlled Clinical Trials, 1986