Linking Chiral Indices and Transport Properties of Double-Walled Carbon Nanotubes

Abstract
We performed in situ transport measurements in a transmission-electron microscope (TEM) on individual double-walled carbon nanotubes (DWNT). Using selected-area electron diffraction, the chiral indices of the two tubes constituting the DWNTs were determined through careful comparison with theory. We discuss the case of a DWNT whose two tubes have a gap at half filling and show a finite density of delocalized state at the Fermi level. The exact determination of chiral indices should be reachable in any transport-measurement experiment with samples that allow TEM characterization.