Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria

Abstract
A survey was conducted with seventeen enteric bacterial strains (including the generaKlebsiella, Enterobacter, Escherichia, Citrobacter, Edwardsiella andProteus) to examine their ability to transform furfural and 5-hydroxymethyl furfural (5-MHF). The enteric bacteria were able to convert furfural to furfuryl alcohol under both aerobic and anaerobic conditions in a relatively short incubation time of 8 h. 5-HMF was transformed by all the enteric bacteria studied to an unidentified compound postulated to be 5-hydroxymethyl furfuryl alcohol, which had an absorbance maximum of 222 nm. These bacteria did not transform furfuryl alcohol or 2-furoic acid. The enteric bacteria did not use furfural, 5-HMF, furfuryl alcohol or 2-furoic acid as sole source of carbon and energy. Biotransformation of furfural and 5-HMF was accomplished by co-metabolism in the presence of glucose and peptone as main substrates. The rate of transformation was similar under both aerobic and anaerobic conditions. These transformations are likely to be of value in the detoxification of furfurals, and in their ultimate conversion to methane and CO2 by anaerobic digestion.