Force spectroscopy study of the adhesion of plasma proteins to the surface of a dialysis membrane: Role of the nanoscale surface hydrophobicity and topography

Abstract
A mechanochemical study of the process of adhesion of plasma proteins to the surface of dialysis membranes was carried out with a scanning force microscope (SFM) in the force spectroscopy mode. Three representative blood plasma proteins (fibronectin, fibrinogen, and albumin) covalently were grafted to a SFM probe, and the adhesion forces of these proteins to cellulosic and synthetic dialysis membranes were measured. The experiment was tailored to apply a controlled load on the protein molecules adsorbed onto the surface in order to simulate the squeezing forces exerted on them during blood filtration. The de‐adhesion forces, measured using this new approach for studying the interaction between a protein and dialysis membranes, suggest that the membrane's topography, at a nanometer scale, plays a critical role in the adhesion process. This result was strongly supported by parallel experiments performed on a flattened glass surface with the same dominant hydrophilic character as dialysis membranes. In contrast, a hydrophobic polystyrene surface led to de‐adhesion forces at least one order of magnitude greater, overwhelming any possible shape recognition process between the protein molecules and the surface. © 2002 Wiley Periodicals, Inc. J Biomed Mater Res 61: 370–379, 2002
Funding Information
  • Programmi Biotecnologie (legge 95/95 (MURST 5%))
  • Progetto CNR MSTA II Biomateriali