Aluminum ions stimulate the oxidizability of low density lipoprotein by Fe2+: Implication in hemodialysis mediated atherogenic LDL modification

Abstract
Objective: Al3+ stimulates Fe2+ induced lipid oxidation in liposomal and cellular systems. Low-density lipoprotein (LDL) oxidation may render the particle atherogenic. As elevated levels of Al3+ and increased lipid oxidation of LDL are found in sera of hemodialysis patients, we investigated the influence of Al3+ on LDL oxidation. Materials and methods: Using different LDL modifying systems (Fe2+, Cu2+, free radical generating compounds, human endothelial cells, hemin/H2O2 and HOCl), the influence of Al3+ on LDL lipid and apoprotein alteration was investigated by altered electrophoretic mobility, lipid hydroperoxide-, conjugated diene- and TBARS formation. Results: Al3+ could stimulate the oxidizability of LDL by Fe2+, but not in the other systems tested. Al3+ and Fe2+ were found to bind to LDL and Al3+could compete with Fe2+ binding to the lipoprotein. Fluorescence polarization data indicated that Al3+ does not affect the phospholipid compartment of LDL. Conclusions:The results indicate that increased LDL oxidation by Fe2+ in presence of Al3+ might be due to blockage of Fe2+ binding sites on LDL making more free Fe2+ available for lipid oxidation.