KAM theory in configuration space

Abstract
A new approach to the Kolmogorov-Arnold-Moser theory concerning the existence of invariant tori having prescribed frequencies is presented. It is based on the Lagrangian formalism in configuration space instead of the Hamiltonian formalism in phase space used in earlier approaches. In particular, the construction of the invariant tori avoids the composition of infinitely many coordinate transformations. The regularity results obtained are applied to invariant curves of monotone twist maps. The Lagrangian approach has been prompted by a recent study of minimal foliations for variational problems on a torus by J. Moser.

This publication has 14 references indexed in Scilit: