Abstract
In a series of experiments, cultured myotubes were exposed to passive stretch or pharmacological agents that block contractile activation. Under these experimental conditions, the formation of Z lines and A bands (morphological structures, resulting from the specific structural alignment of sarcomeric proteins, necessary for contraction) was assessed by immunofluorescence. The addition of an antagonist of the voltage-gated Na+ channels [tetrodotoxin (TTX)] for 2 days in developing rat myotube cultures led to a nearly total absence of Z lines and A bands. When contractile activation was allowed to resume for 2 days, the Z lines and A bands reappeared in a significant way. The appearance of Z lines or A bands could not be inhibited nor facilitated by the application of a uniaxial passive stretch. Electrical stimulation of the cultures increased sarcomere assembly significantly. Antagonists of L-type Ca2+ channels (verapamil, nifedipine) combined with electrical stimulation led to the absence of Z lines and A bands to the same degree as the TTX treatment. Western blot analysis did not show a major change in the amount of sarcomeric α-actinin nor a shift in myosin heavy chain phenotype as a result of a 2-day passive stretch or TTX treatment. Results of experiments suggest that temporal Ca2+ transients play an important factor in the assembly and maintenance of sarcomeric structures during muscle fiber development.