Abstract
The validation of the ubiquitin-proteasome pathway as a target for therapy of hematological malignancies stands out as one salient example of the ability to translate laboratory-based findings from the bench to the bedside. Preclinical studies showed that proteasome inhibitors had significant activity against models of non-Hodgkin lymphoma and multiple myeloma, and identified some of the relevant mechanisms of action. These led to phase I through III trials of the first clinically available proteasome inhibitor, bortezomib, which confirmed its activity as a single agent in these diseases. Modulation of proteasome function was then found to be a rational approach to achieve both chemosensitization in vitro and in vivo, as well as to overcome chemotherapy resistance. Based on these findings, first-generation bortezomib-based regimens incorporating traditional chemotherapeutics such as alkylating agents, anthracyclines, immunomodulatory agents, or steroids have been evaluated, and many show promise of enhanced clinical anti-tumor efficacy. Further studies of the pro-and anti-apoptotic actions of proteasome inhibitors, and of their effects on gene and protein expression profiles, suggest that novel agents, such as those targeting the heat shock protein pathways, are exciting candidates for incorporation into these combinations. Phase I trials to test these concepts are just beginning, but have already shown some encouraging results. Finally, novel proteasome inhibitors are being developed with unique properties that may also have therapeutic applications. Taken together, these studies demonstrate the power of rational drug design and development to provide novel, effective therapies for patients with hematological malignancies.