Discovery of a Piperidine-4-carboxamide CCR5 Antagonist (TAK-220) with Highly Potent Anti-HIV-1 Activity

Abstract
We incorporated various polar groups into previously described piperidine-4-carboxamide CCR5 antagonists to improve their metabolic stability in human hepatic microsomes. Introducing a carbamoyl group into the phenyl ring of the 4-benzylpiperidine moiety afforded the less lipophilic compound 5f, which possessed both high metabolic stability and good inhibitory activity of HIV-1 envelope-mediated membrane fusion (IC50 = 5.8 nM). Further optimization to increase potency led to the discovery of 1-acetyl-N-{3-[4-(4-carbamoylbenzyl)piperidin-1-yl]propyl}-N-(3-chloro-4-methylphenyl)piperidine-4-carboxamide (5m, TAK-220), which showed high CCR5 binding affinity (IC50 = 3.5 nM) and potent inhibition of membrane fusion (IC50 = 0.42 nM), as well as good metabolic stability. Compound 5m strongly inhibited the replication of CCR5-using HIV-1 clinical isolates in human peripheral blood mononuclear cells (mean EC50 = 1.1 nM, EC90 = 13 nM) and exhibited a good pharmacokinetic profile in monkeys (BA = 29%). This compound has been chosen as a clinical candidate for further development.

This publication has 16 references indexed in Scilit: