Finite Element with Inner Softening Band

Abstract
A new technique for modeling localized deformations within a softening band is described, where softening is attributed to a displacement discontinuity within an element. Concepts such as fracture strain are not included in the formulation of the model, and consequently nonlocal parameters such as internal length measures are not needed. It is shown that the shape functions within the element provide the necessary information normally given with internal length. In this manner, objectivity with regard to element configuration seems to be automatically satisfied, which is demonstrated by numerical studies in which Rankine failure criterion is employed. It is also noted that the displacement field rather than the strain field is additively decomposed into elastic and inelastic parts. This additivity is valid independently of the magnitude of displacement continuity in the softening band, which implies that the technique can be extended in a straight‐forward fashion to finite displacements.

This publication has 9 references indexed in Scilit: