DETECTION OF A NOVEL REACTIVE METABOLITE OF DICLOFENAC: EVIDENCE FOR CYP2C9-MEDIATED BIOACTIVATION VIA ARENE OXIDES
Open Access
- 1 June 2005
- journal article
- Published by Elsevier in Drug Metabolism and Disposition
- Vol. 33 (6) , 706-713
- https://doi.org/10.1124/dmd.104.003095
Abstract
A new glutathione adduct (M4) was tentatively identified, likely as 2′-hydroxy-3′-(glutathione-S-yl)-monoclofenac, using liquid chromatography-tandem mass spectrometry analysis of incubations of diclofenac with human liver microsomes. The same conjugate was not detected in incubations with either rat or monkey liver microsomes. Formation of M4 was mediated specifically by CYP2C9 in human liver microsomes, as evidenced by the following observations: 1) cDNA-expressed CYP2C9-catalyzing formation of M4; 2) inhibition of M4 formation by sulfaphenazole, a CYP2C9-selective inhibitor; and 3) strong correlation between the production of M4 and CYP2C9-mediated tolbutamide 4-hydroxylase activities in a panel of human liver microsome samples. Formation of M4 suggests the existence of a new reactive intermediate as diclofenac-2′,3′-oxide. A tentative pathway states that diclofenac is oxidized to diclofenac-2′,3′-oxide that reacts with glutathione (GSH) to form a thioether conjugate at the C-3′ position, followed by a concomitant loss of chlorine to give rise to M4. Furthermore, a likely mechanism leading to the formation of diclofenac oxides is rationalized: CYP2C9-catalyzed oxidation at the C-3′ position of the dichlorophenyl ring to form a cationic σ-complex that subsequently results in diclofenac-3′,4′-oxide and diclofenac-2′,3′-oxide; the former oxide is converted to 4′-hydroxy-diclofenac as a major metabolite and can be trapped by GSH to produce 4′-hydroxy-3′-glutathione-S-yl diclofenac (M2), whereas the latter oxide forms 3′-hydroxy-diclofenac and can be trapped by GSH to produce M4. This mechanism is consistent with the structural modeling of the CYP2C9-diclofenac complex, which reveals that both the C-3′ and C-4′ of the dichlorophenyl ring are proximate to the heme group.Keywords
This publication has 29 references indexed in Scilit:
- Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicityToxicology and Applied Pharmacology, 2003
- Proteomic Characterization of Metabolites, Protein Adducts, and Biliary Proteins in Rats Exposed to 1,1-Dichloroethylene or DiclofenacChemical Research in Toxicology, 2003
- A Proton-Shuttle Mechanism Mediated by the Porphyrin in Benzene Hydroxylation by Cytochrome P450 EnzymesJournal of the American Chemical Society, 2003
- Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on PeptidesThe Journal of Physical Chemistry B, 2001
- Hepatic metabolism of diclofenac: role of human CYP in the minor oxidative pathwaysBiochemical Pharmacology, 1999
- Clinical Pharmacokinetics of DiclofenacClinical Pharmacokinetics, 1997
- Characterization of a novel diclofenac metabolite in human urine by capillary gas chromatography-negative chemical ionization mass spectrometryJournal of Chromatography B: Biomedical Sciences and Applications, 1996
- Cytochrome P450TB (CYP2C): A major monooxygenase catalyzing diclofenac 4′-hydroxylation in human liverLife Sciences, 1993
- Mass spectrometry in the analysis of glutathione conjugatesJournal of Mass Spectrometry, 1993
- Pharmacokinetics of Diclofenac and Five Metabolites After Single Doses in Healthy Volunteers and After Repeated Doses in PatientsXenobiotica, 1988