A study of three species prey-predator reaction-diffusions by monotone schemes
- 1 May 1984
- journal article
- Published by Elsevier in Journal of Mathematical Analysis and Applications
- Vol. 100 (2) , 583-604
- https://doi.org/10.1016/0022-247x(84)90103-3
Abstract
No abstract availableThis publication has 10 references indexed in Scilit:
- Monotone scheme for finite difference equations concerning steady-state prey-predator interactionsJournal of Computational and Applied Mathematics, 1982
- Monotone schemes for semilinear elliptic systems related to ecologyMathematical Methods in the Applied Sciences, 1982
- Global asymptotic stability for a class of many-variable volterra prey-predator systemsNonlinear Analysis, 1981
- Comparison principles for reaction-diffusion systems: Irregular comparison functions and applications to questions of stability and speed of propagation of disturbancesJournal of Differential Equations, 1981
- Stability Results for Semilinear Evolution Equations and Their Application to Some Reaction-Diffusion ProblemsSIAM Journal on Applied Mathematics, 1980
- Bifurcations and large-time asymptotic behavior for prey-predator reaction-diffusion equations with Dirichlet boundary dataJournal of Differential Equations, 1980
- The volterra model for three species predator-prey systems: Boundedness and stabilityJournal of Mathematical Biology, 1979
- Nonlinear reaction-diffusion models for interacting populationsJournal of Mathematical Analysis and Applications, 1978
- Diffusion and the Predator-Prey InteractionSIAM Journal on Applied Mathematics, 1977
- On the Existence of Positive Solutions of Nonlinear Elliptic Boundary value ProblemsIndiana University Mathematics Journal, 1971