THE IMPACT OF EXTREME OBSERVATIONS ON SIMPLE FORECASTING METHODS*

Abstract
In general linear modeling, an alternative to the method of least squares (LS) is the least absolute deviations (LAD) procedure. Although LS is more widely used, the LAD approach yields better estimates in the presence of outliers. In this paper, we examine the performance of LAD estimators for the parameters of the first‐order autoregressive model in the presence of outliers. A simulation study compared these estimates with those given by LS. The general conclusion is that LAD does not deal successfully with additive outliers. A simple procedure is proposed which allows exception reporting when outliers occur.

This publication has 19 references indexed in Scilit: