Universality Classes of Self-Avoiding Fixed-Connectivity Membranes
Abstract
We present an analysis of extensive large-scale Monte Carlo simulations of self-avoiding fixed-connectivity membranes for sizes (number of faces) ranging from 512 to 17672 (triangular) plaquettes. Self-avoidance is implemented via impenetrable plaquettes. We simulate the impenetrable plaquette model in both three and four bulk dimensions. In both cases we find the membrane to be flat for all temperatures: the size exponent in three dimensions is nu=0.95(5) (Hausdorff dimension d_H=2.1(1)). The single flat phase appears, furthermore, to be equivalent to the large bending rigidity phase of non-self-avoiding fixed-connectivity membranes - the roughness exponent in three dimensions is xi=0.63(4). This suggests that there is a unique universality class for flat fixed-connectivity membranes without attractive interactions. Finally we address some theoretical and experimental implications of our work.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: