On 2D Euler Equations: Part I. On the Energy-Casimir Stabilities and The Spectra for Linearized 2D Euler Equations
Abstract
In this paper, we study a linearized two-dimensional Euler equation. This equation decouples into infinitely many invariant subsystems. Each invariant subsystem is shown to be a linear Hamiltonian system of infinite dimensions. Another important invariant besides the Hamiltonian for each invariant subsystem is found, and is utilized to prove an ``unstable disk theorem'' through a simple Energy-Casimir argument. The eigenvalues of the linear Hamiltonian system are of four types: real pairs ($c,-c$), purely imaginary pairs ($id,-id$), quadruples ($\pm c\pm id$), and zero eigenvalues. The eigenvalues are computed through continued fractions. The spectral equation for each invariant subsystem is a Poincar\'{e}-type difference equation, i.e. it can be represented as the spectral equation of an infinite matrix operator, and the infinite matrix operator is a sum of a constant-coefficient infinite matrix operator and a compact infinite matrix operator. We have obtained a complete spectral theory.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: